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Abstract

In this paper we combinetwo framevorksin the context
of an importantapplication. The first frameawvork, called
“artificial physics, is describedin detail in a companion
paperby SpeasandGordon[13]. Thepurposeof artificial
physicgs thedistributedspatialcontrol of large collections
of mobilephysicalagents.Theagentscanbecomposedhto
geometricpatterns(e.g., to act as a sensinggrid) by hav-
ing themsenseand respondto local artificial forcesthat
are motivatedby natural physicslaws. Thepurposeof the
secondramevorkis global monitoringof theagentforma-
tions developedwith artificial physics. Using only limited
global information,the monitor chedksthat the desied ge-
ometricpatternemepgesovertimeasexpectedlf theris a
problem,the global monitorstees the agentsto self-repair
Our combinedappmad of local contol throughartificial
physicsglobalmonitoring and“steering” for self-repairis
implemente@ndtestedon a problemwhee multipleagents
forma hexagonallattice pattern.

1. Intr oduction

The objectve of this researchis the distributed control
of large numbersf mobile physicalagentgo form regular
geometricconfigurationse.g.,to actassensinggrids. Dur-
ing formation,the configurationsaremonitoredby a global
obsener to detectwhetherthereis a significantincrease
in the numberof patternviolations over time. Our com-
binedapproactof distributedlocal controlandglobalmon-
itoring enablesspatio-temporatoordinationof the agents.
The agentamay rangein scalefrom neuronsnanobotspr
micro-electromechanicalystemgMEMS) to micro-airve-
hicles(MAVs) andsatellites.The exampleconsideredhere
is that of a swarm of MAVs whosemissionis to form a
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hexagonallattice, which createsan effective sensinggrid.
Essentially sucha lattice will createa virtual antennaor
syntheticapertureradarto improve the resolutionof radar
images. A virtual antennas expectedto be an important
future applicationof MAVs. Currently the technologyfor
MAV swarms(andswarmsof othermicro-vehiclessuchas
micro-satellites)s in the earlyresearctstage Nevertheless
we aredevelopingthe controlsoftwarenow sothatwe will
beprepared.

We assumeagentscan only senseand affect nearby
agents;thus the problemis one of “local” control. The
methodfor local controlshouldbe basedn principlessuch
as self-assemblyfault-tolerance,and self-repair These
principlesarepreciselythoseexhibited by naturalsystems.
This leadsus to look at the laws of physicsfor ideason
distributed control. To explore this, we have developeda
generalframenork for distributed controlin which “artifi-
cial physics”(AP) forcescontrol agents.We usethe term
“artificial” becauselthoughwe are motivated by natural
physicalforces,we arenot restrictedto only naturalphys-
ical forces. The agentsarent really subjectto realforces,
but they canact asif the forcesarereal. Thusthe agents
sensorawill have to be ableto seeenoughto allow it to
computethe forcesto whichit is reacting. The agents ef-
fectorsshouldallow it to respondto this perceved force.
For detailson AP, seeSpearsandGordon[13].

We seeat leasttwo advantagedo AP. First, in the real
physicalworld, collectionsof small entitiesyield surpris-
ingly complex behaior from very simpleinteractionsbe-
tweenthe entities. Thusthereis a precedenfor believing
thatcomplex control canbe achiezedthroughsimplelocal
interactions.Thisis requiredfor very smallagentgsuchas
nanobots)sincetheir sensorandeffectorswill necessarily
be primitive. Two, sincethe approachs largely indepen-
dent of the size and numberof agents the resultsshould
scalewell to largeragentsandlargersetsof agents.

AP addresseshe problemof distributed agentcontrol
via local rules. This approachwhich alsoincludesfault-
toleranceandlocal self-repaimechanism§l 3], maybein-
adequatdor handlingmajor unanticipatedvents. For ex-
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ample,if a swarm of MAVs is flying in formation, fault-
toleranceand/orlocal self-repaircapabilitiescould enable
recovery from minor air turbulence. Neverthelessjnten-
tional or unintentionalcorruption of the MAVs’ control
software, severe ervironmentalconditions,or widespread
mechanicafailurescouldconcevably resultin anunrecw-
erableproblemmaintainingthe desiredgeometricforma-
tion. Thereforewe alsoincludeaglobalobsererthatmon-
itors the progressof the formation, using the Monitoring
andChecking(MaC) framework, which is describedn de-
tail in Kim etal. [6]. We donotmakethestrongassumption
thatthe global obsener canseethe pattern— becausehis
assumptiormay be infeasiblefor large numbersof widely
distributed agents. We only assumethat the obserer can
communicatevith the individual agents.Eachagentsends
analertif it failsto satisfyits local evaluationmeasureThe
globalobserercollectsthealertsandissuesagenerablarm
if thelocal alertsaretoo frequentfor toolong. Thegeneral
alarmmight be sentto peoplenearbyto persuadéhemto
interveneandmanuallysolve the problemby sendingcom-
manddotheagentsHere weassumehatthegenerahlarm
suggestshe needfor “steering” (i.e., self-repairto recover
from problems).In our approacho steeringtheglobal ob-
sener broadcast$o the agentsa global parametechange
for self-repair This restoresprogresstoward the desired
geometriacconfiguration.

The noveltiesof this paperare: (1) the combinationof
AP with MaC, (2) theintroductionof a steeringmethodfor
self-repairvhenMacC detectsa failure,and(3) experimen-
tal resultsthatvalidatethe usefulnes®f this combinedap-
proachin the context of hexagonallattice formations. The
paperbeginsby presentingheartificial physicsframeawork.
This is followed by a descriptionof how AP canbe used
to generatenexagonallattices. We thendescribethe MaC
frameawork, andapplyit to monitorthe progresf forming
hexagonallattices. Finally, we presenta methodfor steer
ing that adjustsglobal parameterdor self-repair The pa-
perconcludeswvith someinitial results followedby related
work andideasfor futureresearch.

2. Artificial Physics: A Framework for Dis-
trib uted Multiagent Control

Our artificial physicsapproachreatsagentsasphysical
particles thoughtheir actualsizemayrangefrom nanobots
to satellites. A simple but realistic physicalsimulationof
the particles’behaior washuilt. Particlesexist in two di-
mensiongwe seélittle difficulty in generalizingo threedi-
mensionsandareconsideredo bepoint-massesfachpar
ticles haspositionp = (x,y) andvelocityv = (v, vy). We
useadiscrete-timeapproximatiorto the continuousehar-
ior of theparticleswith time-stepAt. At eachtimestepthe
positionof eachparticleundegoesa perturbatiomAp. The

perturbationdependson the currentvelocity Ap = vAt.
Thevelocity of eachparticleat eachtime stepalsochanges
by Av. The changein velocity is controlledby the force
on the particle Av = FAt/m, wherem is the massof
that particleand F' is the force on that particle. An addi-
tional simple frictional force is also always included, for
self-stabilization.

Giventheinitial conditionsandsomedesiredglobal be-
havior, we mustdefinewhatsensorseffectors,andforce F’
laws are requiredsuchthat the desiredbehaior emeges.
We explorethisfor hexagonalattices.

2.1 Creating HexagonalLattices

This subsectiorexplainsthe constructionof hexagonal
lattices,e.g.,for MAV sensomrids. For MAVs, the initial
conditionsareassumedb besimilarto thoseof a“big bang”
— the MAVs arereleasedrom a canisterdroppedfrom a
plane,thenthey spreadoutwardsuntil a desiredgeomet-
ric configurationis obtained.This is simulatedby usinga
two-dimensionaGaussiamandomvariableto initialize the
positionsof all particles(MAVSs). Velocitiesof all particles
areinitialized to be 0.0, and massesare all 1.0 (although
the framavork doesnot requirethis). An exampleinitial
configuratiorfor 150particlesis shavn in Figure2.1.

Figure 1. The initial univer se att = 0.

Since MAVs (or other small agentssuchas nanobots)
have simplesensorandprimitive CPUs,our goalis to pro-
vide the simplestpossiblecontrol rulesthat requiremini-
mal sensorandeffectors.At first blush,creatinghexagons
would appearto be somevhat complicatedyequiringsen-
sorsthatcancalculaterange the numberof neighborstheir
angles,etc. However, it turns out that only rangeinfor-
mationis required. To understandhis, recallan old high-
schoolgeometrylessonin which six circlesof radiusR can
bedravn ontheperimeteiof acentralcircle of radiusR (the
factthatthis canbe donewith only acompassndstraight-
edgecan be proven with Galois theory). Figure 2 illus-
tratesthis construction.Notice thatif the particles(shavn
assmallcircularspots)aredepositedat the intersection®f
thecircles,they form ahexagon.

The constructiorindicatesthathexagonscanbe created
via overlappingcirclesof radiusR. To mapthisinto aforce
law, imaginethateachparticlerepelsotherparticlesthatare
closerthan R, while attractingparticlesthatarefurtherthan
R in distance Thuseachparticlecanbeconsideredo have
acircular“potentialwell” arounditself atradiusR — neigh-
boring particleswill wantto be at distanceR from each



Figure 2. How circles can create hexagons.

other Theintersectiorof thesepotentialwells is a form of

constructve interferencethat creates'nodes” of very low

potentialenegy wherethe particleswill belikely to reside
(againthesearethe smallcircularspotsin the previousfig-

ure). Thusthe particlessene to createthe very potential
enegy surfacethey arerespondingo!

With this in mind we defined a force law F =
Gm;m;/r?, whereF is themagnitudeof theforcebetween
two particles; andj, andr is therangebetweerthetwo par
ticles. The"gravitationalconstant'G is setatinitialization.
Theforceisrepulsveif r < R andattractveif r > R. Each
particlehasonesensoithat candetectthe rangeto nearby
particles. The only effectoris to be ableto move with ve-
locity v. To ensurethatthe force laws arelocal in nature,
particlescannot evenseeor respondo otherparticlesthat
aregreatetthan1.5R in distance?

The initial universeof 150 particles(as shovn in Fig-
ure 2.1) evolves, using this very simple force law. For a
radiusR of 50 we have foundthata gravitational constant
of G = 1200 provides good results(thesevaluesfor R,
G, andthenumberof particlesremainfixedthroughouthis
paper).Figure3 shavs the systemafter35time steps.

Figure 3. The 150 particles form agood hexag-
onal lattice by t = 35.

Thereare a couple of importantobsenationsto make
aboutFigure 3. First, a reasonablywell-definedhexago-
nal lattice hasbeenformedfrom the interactionof simple
local force laws thatinvolve only the detectionof distance
to nearbyneighbors. Also, the perimeteris not a perfect
hexagon,althoughthis is not surprising,given the lack of

1The constantl.5 is not choserrandomly In a hexagon,if a nearby
neighboris furtherthan R away, it is > +/3R avay. We wantedthe force
laws to beaslocal aspossible.

global constraints. However, mary hexagonsare clearly
embeddedn the structureandthe overall structureis quite
hexagonal.Thesecondbsenationis thateachnodein the
structurecanhave multiple particles(i.e., multiple particles
can“cluster” together).Clusteringis anemegentproperty
that providesincreasedohust (fault-tolerantoehaior, be-
causehedisappearancef individual agentsrom a cluster
will have minimal effect.

2.2 Discussion

The artificial physicsframeawork offersa numberof ad-
vantages. For one, it enabledarge numbersof agentsto
self-assemblato geometridattices.Here,we have shavn
the methodfor assemblindhexagonallattices. With a mi-
nor extension(theintroductionof a“spin” attribute),agents
canalsoself-assemblanto squareandotherlattices.Fault-
tolerancefrom clusteringis anotheradvantageof the AP
framewvork. Furthermorejn SpearsandGordon[13], it is
shavn thatthereis an effective offline evaluationmeasure
of lattice quality that averagesthe angularerror through-
outthelattice. Thisis usefulduring programdevelopment.
Finally, SpearandGordon[13] presentffectivelocal self-
repairmethodghatcanfill gapsin thelattice(emptynodes)
andreducetheangularerror.

AlthoughAP hasthedesirablettributesof enablingself-
assemblyfault-toleranceandlocal self-repairit cannotad-
dressall problemsthatthe agentamight encounterin par
ticular, althoughthe offline measureof lattice quality pro-
vides assistance&luring programdevelopment,it relieson
measuringanglesand making geometriccomparisonse-
tweenagentghatarefar apartin thelattice. As statedear
lier, we do not wantagentso have to measureanglesand
we cannotassumesensorghat detectotheragentsbeyond
thevisibility range. Thereforewe requirea simpleronline
measuref lattice quality. Furthermorealthoughthelocal
self-repairmethodsareeffective for repairingemptynodes
andglobalflawsin angleqsuchasthosedetectedy thean-
gular error measure)they arenot capableof restoringthe
lattice after severedisturbancethatdistortthe shapeof the
perimeter An exampleof a potentialhazardfor an MAV
is air turbulence.MAVs areexpectedo be small(lessthan
six inchesin length,width, andheight),slow (traveling 22-
45 milesperhour),andlight (50-70grams).Thistranslates
into a low Reynoldsnumber which impliesthatfor practi-
cal purposesnertia canbe ignoredandthe MAVs will be
especiallyvulnerableto air turbulence[7]. Our solutionis
to addMonitoring andChecking.
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3. A Framework for Global Monitoring

The Monitoring and Checking(MaC) frameawork (see
Figure 4) aims at run-time assurancenonitoring of real-
timesystemsThecurrentimplementations in Java,though
the framawork is genericand can apply to arny language.
The framework includestwo main phases:(1) beforethe
systemis run, its implementationand requirementspeci-
fication are usedto generateun-time monitoring compo-
nents;(2) during systemexecution,information aboutthe
runningsystemis collectedand matchedagainstthe (user
generatedjequirements.

During the first phase,MaC provides a mappingbe-
tweenhigh-level eventsusedin the requiremenspecifica-
tion and low-level stateinformation extractedduring exe-
cution. They arerelatedby meansof a monitoringscript,
which describeshow eventsat the requirementdevel are
definedin termsof monitoredstatesof animplementation.
For example,in the requirementsve may wantto express
the eventthatthe agentsaret coC ose. Theimplemen-
tation storesthe informationaboutproximity in a variable
di st ance. In anexecutionstate,this variablehasa par
ticular value. The monitoringscriptin this casecandefine
the eventt 00Cl ose as(di stance > 0. 25*R) &&
(di stance < 0. 75*R). Thisdefinitionoft ooCl ose
capturesthe notion that if neighboringparticles are <
0.25R apartthen we permit this becausehey arein the
samecluster(node); however, if they arenot in the same
clusterthenwe wantthemto be approximatelyR apart.

Themonitoringscriptis usedto automaticallygenerate
filter andaneventrecanizerfor run-timemonitoring. The
filter is a setof programfragmentsthat are insertedinto
theimplementatiorto instrumenthe system.Instrumenta-
tion is performedstaticallydirectly on the code(bytecode

in the caseof Java). Instrumentations automaticwhichis
madepossibleby the low-level descriptionin the monitor
ing script. Theessentiafunctionality of thefilter is to keep
track of changego monitoredobjectsand sendpertinent
stateinformationto the eventrecognizer

The monitoringscriptis alsousedto automaticallygen-
eratetheeventrecognizerTheeventrecognizedetectsac-
cordingto the monitoringscript, occurrence®f high-level
eventsfrom the datareceved from thefilter. The purpose
of the event recognizeris to deliver eventsto a run-time
cheder, describedelow.

Also, duringthefirst phasethe userformalizesthe sys-
tem requirementsn a requirementsspecification The re-
qguirementsin this specificationare definedin terms of
events(which aredefinedin the monitoringscript). A run-
time checler is producedautomaticallyfrom the require-
mentsspecification.The purposeof therun-timechecleris
to determineatrun-timewhetherthe systenis satisfyingits
requirements.

In summaryduringthefirst phasethe userdefinesa re-
guirementsspecificationand a monitoringscript. The re-
guirementsspecificationdefineswhat the userexpectsof
the system. The monitoring script provides event defini-
tionsnecessarfor therequirementspecification Fromthe
monitoringscript,afilter andeventrecognizemareautomat-
ically generatedandfrom the requirementspecificationa
run-timechecleris automaticallygenerated.

During the second(run-time) phase,the instrumented
implementationis executedwhile being monitored. The
filter sendsrelevant stateinformationto the event recog-
nizer, which detectsevents. Theseeventsarethenrelayed
to therun-timechecler, whichchecksadherencéo theuser
desiredrequirements.



Requi renent Speci fication HexagonPattern

import event MAVal ert, startPgm
Auxiliary Variabl es :

var long currlnterval;

var int countO, countl, count?2;
var int prevAverage, currAverage;

Alarm Definition :

property NoPattern =
(currAverage > prevAverage*1.15 + 100) &&
(prevAverage !'= -1);

Auxiliary Variable Definitions:

event startPeriod = (tinme(MAvalert) -
currlnterval > 10000);

startPgm -> {
currlnterval
count0 = O;
prevAver age
currAver age

startPeriod -> {
currlnterval = currlnterval
prevAverage = currAver age;
currAverage = (count O+count 1+count 2)/ 3;
count2 = count1;

= time(startPgm;

_l’
-1; }

+ 10000;

count1l = countO;
count0 = 0; }
MAVal ert -> {

count0 = countO + 1; }

Figure 5. MEDL requirement specification.

3.1 The Monitoring Language

We give a very brief overview of two languages:one
to describemonitoringscripts(i.e., whatto obsere in the
program),andthe otherto describethe requirementspec-
ification (i.e., the requirementshat the programmustsat-
isfy). For more detailson the logical framavork of these
languagesseeKim etal. [6].

The language for monitoring scripts is called the
Primitive EventDefinitionLanguag€PEDL).Requirement
specificationsare written in the Meta Event Definition
Language(MEDL). The primary reasonfor having two
separatdanguagesn the MaC framework is to separate
implementation-specifidetailsof monitoringfrom there-
guirementsspecification. This separatiorensureghat the
framevork is portable to different implementationlan-
guagesand specificationformalisms, while providing a

Monitoring Script MAVpattern

export event MAVal ert, startPgm

Moni tored Entities :

nonobj int Hexagon. R;
monnet h voi d Emul at eMAV. nmai n(String[]);
nmonobj doubl e Mav. run(). di stance;
Event Definitions :
event startPgm =
start M Enul ateMAV. mai n(String[]) );
event tood ose =
(Mav. run().di stance > 0. 25*Hexagon. R) &&
(Mav. run().di stance < 0. 75*Hexagon. R);
event tooFar =
(MAV. run().distance > 1.25*Hexagon. R) &&
(MAV. run().di stance < 1.5*Hexagon.R);
event MAVal ert = tooC ose || tooFar;

Figure 6. PEDL script.

cleaninterfaceto the designerof monitors. For example,
if we wish to retaigetour systemfrom programsaritten in
Javato C++,thenall we would needto modify is thesyntax
of PEDL,leaving MEDL unchanged.

The designof PEDL, the languagefor writing monitor
ing scripts,is basedon the following two principles. First,
we encapsulatall implementation-specifidetailsof moni-
toringin PEDL scripts.Secondwe wanteventrecognition
to be assimpleas possible. The nameof the languagere-
flectsthe fact that the main purposeof PEDL scriptsis to
define primitive eventsthat can be referencedn require-
mentspecifications.

The requirementshat needto be monitoredarewritten
in MEDL. LikePEDL,MEDL is basednalogic of events.
Thislogic hasalimited expressie power. For example,one
cannotcountthe numberof occurrencesf anevent,or talk
abouttheith occurrenceof anevent. Becausave needad-
ditional expressve capabilitiessuchascountingfor the re-
guirementsspecificationsMEDL allows the userto define
auxiliary variables.Updatesof auxiliary variablesaretrig-
geredby events. For example,MAVal ert -> count 0
= count 0 + 1 canbeinterpretedasstatingthatthe oc-
currenceof eventMAVal ert triggersthe systento incre-
menttheauxiliaryvariablecount 0. MEDL alsoallowsthe
definitionof comple eventsusingexpression®f primitive
eventsandauxiliary variables.

Correctnessof the systemis describedin terms of
alarms which are eventsthat shouldnever occut Alarms
aredefinedin termsof eventsand/orauxiliary variables.



4. Global Monitoring and Steering of Hexago-
nal Lattice Formations

Ourapproactassumethatoneagentactsasaglobalob-
senerto monitortheformation. The obsener might bethe
planethat droppedthe MAVs. This global obserer uses
MacC to determinewhetherthe desiredpatternof agentss
formingasexpected We donotmakethestrongassumption
thattheglobalobsenrercanseethepattern.Thisassumption
may be infeasiblefor large numbersof widely distributed
agentslnsteadwe only assumehatthe obsener cancom-
municatewith theindividual agents.

This approacho monitoringis basednthe obsenation
thatin the hexagonallattice, eachneighborof an MAV is
eitheratafixeddistanceR (adjacentode),or very closeto
theMAV in question(samenode).If thepatternis not fully
formed,thereare MAVs thathave neighborsan otherloca-
tions,andthis canbe detectedhasa violation of the pattern.
Intuitively, we shouldexpectthat asthe patternforms, the
numberof suchviolationsshoulddecrease.

We call the requirementbeing specifieda property.
An implementation-independeMtEDL specificatiorof the
propertyjust describeds shavn in Figure5. The primi-
tive eventMAVal ert (abbreviated“alert”) denotesa spa-
tial misplacemenbf someneighborof an MAV. For the
purposeof countingalert events,time is divided into in-
tenals. Auxiliary variablecount O is usedto countthe
numberof violations (alerts)of the patternin the current
interval. When an interval elapsesthe numberof alerts
over this interval and the previous two are averaged. In
otherwords, averagingis doneover a sliding window of
sizethree. Thereasonfor averagingis to reducethe vari-
ancein alertnumbers.This averageis comparedwith the
averageobtainedat the end of the previousintenal. If a
significantincreasen the numberof violationsis detected
(measuredas cur r Aver age > prevAverage*1. 15
+ 100, which is an empirically determinedthreshold),
thenanalarmNoPat t er n is sentasnotificationof a pat-
ternformationproblem.

The AP-MaC combinationhas been implementedin
Java. Monitoring is appliedto a distributed emulatorof
MAV deployment. EachMAV is representedis a sep-
arateinstanceof classMAV, basedon the standardJava
classThr ead. When the threadin an MAV is run, it
continuouslyexecutesthe AP positioning algorithm and
gueriesits neighborsfor their positions. A local vari-
able MAV. run() . di st ance in therun() methodof
the MAV classis usedto hold the distancefrom the cur-
rently queriedneighbor Hexagon. R is the variablefor
the desiredhexagonradius R. The monitoring script in
PEDL for this implementatioris shavn in Figure®6. It de-
fineseventMAVal ert in termsof thevalueof thevariable
MAV. run() . di st ance. EventMAVal ert is defined
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Figure 7. Formation after a blast.
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to occurif aneighborMAV ist cod ose ort ooFar . By
declaringthe variableas a monitoredentity, the scriptin-
structsthefilter to reportall updatesf this variablesothat
they canbe comparedwith the acceptableangeof values
describedn thescript.

5. Experimental Results

We testedthe combinedAP-MaC implementationwith
150simulatedMAVs. AP wasusedto form thelattice,and
MaC determinedwhetherthe frequeng of MAvVal ert s
(alerts)wasincreasing.Wheneer the frequeng increased
significantlyaNoPat t er n alarmwasissued.Therequire-
mentsspecificationand monitoring script usedwerethose
shavn in Figuresb and6, respectiely.

Undernormalconditions the numberof alertsgradually
decreaseasthe hexagonalatticeis formed,andno alarms
areissued.Now thatwe have a methodfor monitoring,to
testthis methodwe needto subjectthe MAVs to an un-
expectedyet severe ervironmentalcondition that disrupts
the formation. We have implementedhis asa blast(i.e.,
an explosionthat causesa gustof wind), which is applied
to onesideof the lattice afterit hasbeenformed. The ef-
fectof theblastonanMAV is inverselyproportionalto the
squareof the MAV'’s distancefrom the centerof the blast.
In particular this forceis F = 100Gm;/r;?, wherem;
is the massof MAV ¢ andr; is its distancefrom the cen-
ter of the blast. Figure7 shaws the formationafter a blast
hasbeeninjected. Figure 8 shaws the profile of alertsand
alarmsresultingfrom a blast. The numberof alertsde-



creasessthe hexagonallattice is formed. However after
the blast,injectedaroundtime 80, the numberof alertsin-

creaseenoughto setoff analarm. This profile is typical.
In this figure, if analarmis absentits magnitudeis O; if

analarmis issued,jts magnitudes 6000. This is donefor
graphicalcorvenience.In reality, alarmNoPat t er n has
nomagnitudeijt is binary-valued.

Figure 9. Formation after steering.

Although the numberof alerts decreasesifter a suffi-
ciently long time following the blast, from visual inspec-
tion we oftenfind thatthe formationis not a well-defined
hexagonallattice. Local flaws canbe fixed with local self-
repair methods but the concaity in the overall shapere-
sultingfrom theblasttypically persists.Therefore steering
is required. Steeringconsistsof global parametemadjust-
mentto compensatdor the blast. In particular the blast
occurswhich setsoff analarm. After issuinganalarm,the
global monitor broadcasts global commancdto all MAVs
totemporarilysuspendepulsion.In otherwords,for abrief
periodof time all MAVs aretold to assumehattheforce F’
is attractive only. During this time all of the MAVs grav-
itate toward eachother Also during this time alarmsare
suppressedAfter the specifiedtime period(in our experi-
mentsthis lastedthreeintervals, i.e., onewindow of time),
repulsionis resumedThealarmsaresuppressefbr another
threeintenals,however, to give the multiagentsystemtime
to settledown. Figure9 shovstheformationaftersteering.

Table 1. Shape impr ovement from steering.

mean
Sorig — Spre 1.8

Sorig — Spost 0.6

A typical profile of alertsand alarmswith a blastfol-
lowed by steeringlooks the sameasin Figure 8 with no
steering. To evaluatethe effectivenessof steering,a use-
ful offline measureof the quality of the overall shapeis s
= the sizeof (numberof nodespersidein) thelargestper
fectembeddedegularhexagonin theformation.Thismea-
sureis appliedto the original formation (sr44), the post-
blastpre-steerindormation(s,r.), andthe post-blaspost-
steeringformation (spes¢). Table5 shows the differences

Sorig — Spre ANUSorig — Spost, VEragedbver10independent
experiments Smallerdifferencesrebetter Usinganexact
Wilcoxon rank-sumtest,we find thatthereis a statistically
significantdifferencebetweernthe two meangp < 0.001).
Thereforethe experimentalresultsindicatethat steeringis
aneffectivemethodfor recoveringagoodlattice. In conclu-
sion, our methodof global monitoringand error recovery
appearpromising.

6. Related Work

Others have examined physical simulations of self-
assembly Schwartzet al. [12] have investigatedhe self-
assemblyf viral capsidsWinfree[14] hasinvestigatedhe
self-assemblypf DNA double-crosseermoleculesona 2D
lattice. Both Schwartz et al. andWinfree arerestrictedto
usingplausiblemodelsof naturalphysics sincethey arein-
vestigatinghe self-assemblpf smallnaturalparticles.AP,
however, is notboundby this restriction.

AP is alsocloselyrelatedto the work of Carlsonet al.
[2], which investigatestechniquesfor controlling minia-
ture agentssuch as micro-electromechanicaigentsand
nanobots.Their work reliesheavily on the useof a global
controllerthat canimposean external potentialfield that
agentscan sense. Sincewe rely primarily on local force
interactionsthe work by Carlsonet al. could be comple-
mentaryto our work.

AP is similar to the “potential field” and “behavior
based”approachego robotics. Potentialfield (PF) ap-
proached4, 5] areusedfor robot navigation and obstacle
avoidance.Like AP, PFapproachesodela goal position
asan attractive force, while obstaclesaremodeledwith re-
pulsive forces. PF computesforce vectorsby taking the
gradientof an entire potentialfield. In AP, however, each
particledirectly computesheforcevectorthatappliesto its
currentposition— the potentialfield is never computed AP
thushaslower computationabverhead.

Behavior basedapproachesge.g.,[1]) derive vectorin-
formationin a fashionsimilar to AP. However, behaior
basedapproacheslo not make useof potentialfields and
forces. Rather they deal directly with velocity vectors.
This distinctionis significantfor two reasons. First, AP
canmimic naturalphysicsphenomenanoreeasilysinceit
dealsdirectly with forces. Second,unlike behaior based
approachesAP hasthe potentialof beinganalyzablewith
cornventionalphysicstechniques.

Thereis alsoresearchrelatedto MaC. Although most
researchin verificationdoesnot addresorrectnesst ex-
ecutiontime, recentlyseveral researctefforts have begun
to addressun-timemonitoring. Yetthey all differ from the
MacC frameawork. For example,in [3, 11], only thebusac-
tivity can be monitored. In our opinion, instrumentation
of a variety of key pointsin the systemallows us to de-



tectviolationsfasterandmorereliably. Severalmonitoring
approachesoncentrat®n areducedlassof safetyproper
ties,e.g.,[10, 8]. By contrastMaC canmonitor all safety
properties Anothernovelty of our work is thatit addresses
propertieswith spatialconstraints.Previous systemverifi-
cationmethodshave focusedalmostexclusively on verify-
ing temporalproperties.

Finally, our combinedapproach,which includeslocal
rulesfor self-assemblyf distributedagentsnto ageomet-
ric formationandglobalmonitoringandsteeringjs unique.
We were motivatedto usedecentralizatior{local rules)as
the basisof our approachbecauseagents,suchas MAVs,
mayhave severecostandweightlimitations,therebyposing
extremerestrictionsontherangeandnumberof sensorand
theprocessingower. The primarydisadwantageof our ap-
proachover purely decentralize@pproachess therequire-
mentof a global obserer. Neverthelessit is not possible
to recover from severe disturbancedo a formation with-
out somecentralrepositoryof information. To minimize
the amountof globalinformation,we only requirethatthe
globalobsenrercollectalertsfrom theagents Furthermore,
our approachincludesa novel and successfumethodfor
formationrepair

7. Conclusionsand Futur e Work

In this paper we have combinedtwo frameworks. The
first, calledartificial physics,is usedfor distributed spatial
control of large collectionsof mobile agentsvia local arti-
ficial forces. The secondramework is for global monitor
ing of the agentformations. Furthermorewe have added
a steeringcapabilityfor self-repair Fromour experimental
results,we canseethatthe combinedapproactis effective
andpotentiallyuseful. We planto exploreavarietyof steer
ing methods.

Another future direction will be to explore alternatve
geometricconfigurations(e.g., continue the direction of
SpearaindGordon[13]) andalternatve requirementspec-
ificationsandmonitoringscripts. The currentpropertybe-
ing monitored(i.e., that the MAVs must not be between
0.25R and0.75R or betweenl.25R and 1.5R) doesnot
necessarilyenforcea hexagonallattice. The explorationof
more sophisticatedroperty requirementsvould be valu-
able. Also, as PEDL scriptsbecomemore sophisticated,
we will needto addressssuesrelatedto the expressionof
gualitative spatialrelations suchasthosein Mukerjee[9].

In conclusion,we have presentedan approachto dis-
tributed spatialcontrol, global monitoring, and steeringof
collectionsof agentghatis independenof the numberand
sizeof the agents.This combinedframewvork haspotential
applicability to a wide rangeof problems,including geo-
metric formationsfor MAV sensinggrids, a virtual space
telescopenanotechnologfor MEMS, fleetsof autonomous

undervater vehicles, and configuring micro-satellitesfor
betterreceptionand transmission. This approachenables
self-assemblpf complex multiagensystemahroughartifi-
cial physicsalongwith monitoringandself-repairto handle
unanticipatedevereevents.Therefore purnovel combined
approachakesus onestepcloserto the autonomougoor
dinationof spatiallydistributedmultiagentsystems When
the technologyfor MAVs andotherphysicalagentsipens
to the extent that we have swarms of micro-agents,we
wouldlike to testour methodon the actualvehicles.
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